Izhikevich Neuron Model

Visualisation of neuronal spiking dynamics

The Izhikevich model is a simple yet biologically plausible model of neuronal spiking dynamics. It is given by the equations:

\[\frac{dv}{dt} = 0.04v^2 + 5v + 140 - u + I\] \[\frac{du}{dt} = a(bv - u)\]

with a reset condition:

\[\text{if } v \geq 30, \text{ then } v \leftarrow c, \quad u \leftarrow u + d\]

{
  "data": [
    {
      "x": [],
      "y": [],
      "mode": "lines",
      "line": {"color": "#007bff", "width": 2},
      "name": "Membrane Potential"
    }
  ],
  "layout": {
    "title": "Izhikevich Neuron Model: Membrane Potential Over Time",
    "xaxis": {"title": "Time [ms]"},
    "yaxis": {"title": "Membrane Potential [mV]", "range": [-80, 40]},
    "margin": {"l": 50, "r": 50, "b": 50, "t": 50}
  }
}
        
0.02
Controls the time scale of the recovery variable u
0.2
Controls the sensitivity of the recovery variable u
-65
Membrane potential reset value after spike
8
Recovery variable reset amount after spike
10
Input current in millivolts
Neuron Type Presets

About the Izhikevich Model

The Izhikevich neuron model can reproduce many different firing patterns observed in real neurons. Despite its computational simplicity compared to Hodgkin-Huxley-type models, it can reproduce various firing patterns by adjusting just four parameters: a, b, c, and d.

  • Parameter a: The time scale of the recovery variable u. Smaller values result in slower recovery.
  • Parameter b: The sensitivity of the recovery variable u to the subthreshold fluctuations of the membrane potential v.
  • Parameter c: The after-spike reset value of the membrane potential v.
  • Parameter d: The after-spike reset of the recovery variable u.

The interactive visualisation above allows you to adjust these parameters and observe how they affect the spiking behavior of the neuron.